Buffer Calculations

It's just equilibrium, it's not magic

Calculating Buffers

- Buffers are amazingly useful in a wide variety
- of settings, but they can be a little
- intimidating.
- Remember, buffers are just weak conjugate
- pairs at equilibrium.
- For many buffer problems, it is convenient to use the Henderson-Hasselbalch Equation, but where did it come from????

Acid Dissociation Equilibrium

For a generic acid in water we have: $HA(aq) + H₂O(l) \Leftrightarrow H₃O⁺(aq) + A⁻(aq)$ With

$$
K_a = \frac{[H_3O^{-1}]_{eq}^1[A^{-}]_{eq}^1}{[HA]_{eq}^1}
$$

For buffers, we're usually interested in pH, so let's try to find it in our K_a expression...

Finding pH

pH is "-log[H₃O⁺]", so let's get a "-log" term in there:

$$
-logK_a = -log\left(\frac{[H_3O^{-1}]_{eq}^1[A^{-1}]_{eq}^1}{[HA]_{eq}^1}\right)
$$

Recall, "-logX" is "pX" Also recall, $log(A*B) = logA + logB$. So:

$$
pK_a = -log[H_3O^+]_{eq}^1 + \left(-log\left(\frac{[A^-]_{eq}^1}{[HA]_{eq}^1}\right)\right)
$$

A little rearranging…

We're getting close…

$$
pK_a = -log[H_3O^+]_{eq}^1 + \left(-log\left(\frac{[A^-]_{eq}^1}{[HA]_{eq}^1}\right)\right)
$$

$$
pK_a = pH + \left(-log\left(\frac{[A^-]_{eq}^1}{[HA]_{eq}^1}\right)\right)
$$

$$
pK_a + log\left(\frac{[A^-]_{eq}^1}{[HA]_{eq}^1}\right) = pH
$$

$$
pH = pK_a + log\left(\frac{[A^-]_{eq}^1}{[HA]_{eq}^1}\right)
$$

$$
pH = pK_a + \log\left(\frac{[A^-]_{eq}^1}{[HA]_{eq}^1}\right)
$$

So the H-H Equation is really just K_a . This also gives us some clues about "good" buffers. If we have an "equimolar" mixture of HA and A-, the ratio of their concentrations is 1. Log(1) is zero, so buffers are "good" when the pH is near the pK_a of the weak acid. *BONUS: This also gives us a way to find the pK^a from the titration curve data…*

$$
pH = pK_a + \log\left(\frac{[A^-]_{eq}^1}{[HA]_{eq}^1}\right)
$$

How near the pK_a ? We said the concentrations should be "within a factor of 10", so the ratio of concentrations should be less that 10 and more than 0.1. Log $10 = 1$, log $0.1 = -1$, so the pH should be within 1 unit of the pK_a to make an effective buffer.

$$
pH = pK_a + \log\left(\frac{[A^-]_{eq}^1}{[HA]_{eq}^1}\right)
$$

One warning here… since the concentrations are used in a ratio, we have to be a little careful about them. $0.01/0.01 = 1$, and $100/100 = 1$, but those would be some VERY different buffers. The concentrations determine the buffer capacity of a buffer. How much acid or base can I add and still be within a factor of 10?

$$
pH = pK_a + \log\left(\frac{[A^-]_{eq}^1}{[HA]_{eq}^1}\right)
$$

As with everything, using the H-H equation takes some practice. It's a really useful derivation of K_a when we're working with buffers, but you have to work with it a bit.

Good luck!

