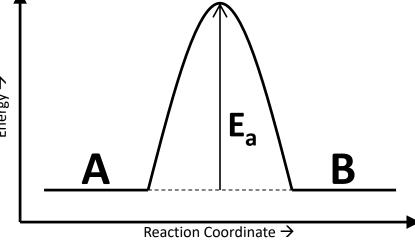

Equilibrium

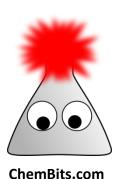
A Simple Energetic Model

Equilibrium

Equilibrium is a dynamic process in which the net concentrations of reactants and products remains constant.

This does **not** mean that the reaction "stops". It means that the forward and reverse reactions are happening at the same rate.

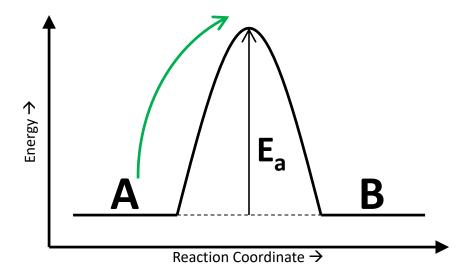

A Simple Example

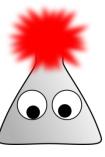

To start, let's consider a very simple reaction:

$$A \longleftrightarrow B$$

And to make it as simple as possible, let's further assume that the energy of "A" is the same as the energy of "B". This gives us a reaction coordinate diagram that looks like

this:

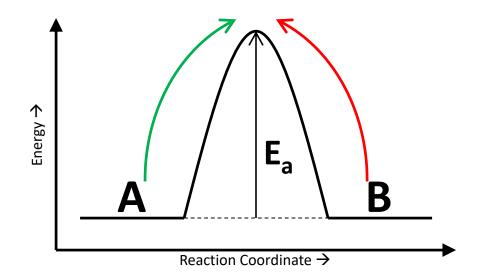


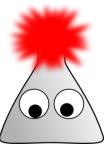

The Forward Reaction

To keep things *really* simple, let's also assume that the reaction is 1st order w.r.t. A so the rate law expression is:

$$Rate_0 = k [A]_0$$

When the reaction starts, we have a relatively high concentration of "A" so the rate is "high".

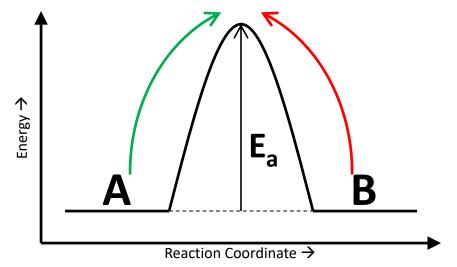


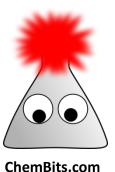


ChemBits.com

The Reverse Reaction

As the reaction occurs, [B] increases. The E_a to go from $B \rightarrow A$ is the same as the E_a from $A \rightarrow B$. If there is enough energy to go forward, there's also enough energy to go backward.





ChemBits.com

Equal Rates, No Net Change

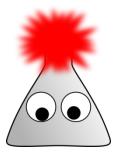
As [A] decreases, the forward rate decreases. As [B] increases, the reverse rate increases. At some point, the concentrations and the rates will balance each other so that there is no net change in [A] or [B] That's equilibrium!

Equilibrium Constant

The rate laws in this process are:

Rate_{forward} =
$$k_{forward}$$
 [A]_{eq}
Rate_{reverse} = $k_{reverse}$ [B]_{eq}

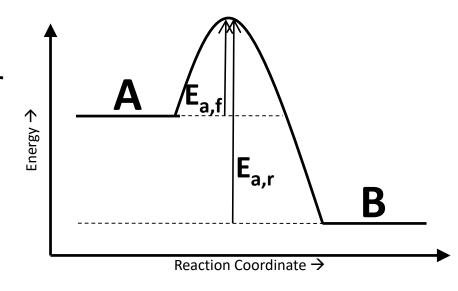
At equilibrium, Rate_{forward} = Rate_{reverse} so:

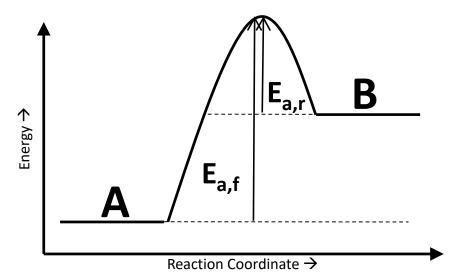

$$k_{forward} [A]_{eq} = k_{reverse} [B]_{eq}$$

Rearranging to put similar terms together:

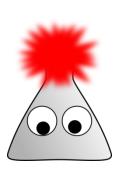
$$\frac{k_{forward}}{k_{reverse}} = \frac{[B]_{eq}}{[A]_{eq}}$$

A ratio of constants is a constant, so:


$$K_{eq} = \frac{[B]_{eq}}{[A]_{eq}}$$

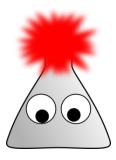


Less "Simple" Systems


What if the energies of A & B are *not* equal?

If B is lower than A, then at equilibrium $[B]_{eq}$ will be *higher* than $[A]_{eq}$ so K_{eq} will be *greater than* 1.

If A is lower than B, then at equilibrium $[A]_{eq}$ will be *higher* than $[B]_{eq}$ so K_{eq} will be *less than* 1.


ChemBits.com

Equilibrium Constants

Equilibrium constant expressions can be similarly derived for more complex systems, but the final result is that for *any* chemical equation, we can write an equilibrium constant expression based solely upon the balanced chemical equation:

$$aA+bB \leftrightarrow cC+dD$$

$$K_{eq} = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}} = \frac{"products"}{"reactants"}$$

